低周波電波とX線で 探る銀河団磁場

滝沢元和、高橋律裕、高橋育美(山形大)、 小澤武揚(国立天文台)、赤堀卓也(鹿児島大)、 中西裕之(鹿児島大)、祖父江義明(東大)他

日本SKA合同サイエンス会議「宇宙磁場:銀河系内現象から大規模構造へ」 2016年10月27日(木)-29日(土)@ルーセントタカミヤ(山形蔵王)

Observational Evidence of Intracluster Magnetic Field (1): Radio Halos / Relics

南の三角座銀河団の電波ハロー(Bernardi et al. 2016) XMM X-ray image(colors) KAT-7 Radio image(white contours) 二つ後の鷹箸講演で

Non-thermal diffuse radio emission from merging clusters of galaxies

synchrotron radio

 $\gamma \sim 10^4$ electrons + 0.1-10 μ G B

1RXS J0603.3+4214 with "Toothbrush"Radio Relic Suzaku X-ray image (colors) Radio image (contours) Itahana et al. (2015) Relicについてはこの後の板花さんの講演で

Triangulum Australis

Observational Evidence of Intracluster Magnetic Field (2):

- **Faraday Rotation**
- Polarized plains of linear polarized radio wave rotate when propagating through the magnetized plasma.

$$\Delta\theta = \frac{2\pi e^3}{m^2 c^2 \omega^2} \int_0^d nB_{\parallel} ds.$$

 Polarized radio sources observations in and behind clusters suggest random magnetic field structures.

Intracluster Magnetic Field

- There is random magnetic field in the intracluster space, whose typical strength is ~ µG.
 - Shyncrotron radio halos/relics
 - Faraday rotation measure
- P_B~0.01P_{th} not important?
 - suppression of fluid instabilities
 - suppression of heat conduction
 - Particle acceleration (magnetic turbulence, shock)

Not only field strength, but also field structures are important.

Abell 2199と電波銀河NGC6166

JVLAで偏波観測 ⇒ RMから磁場の推定を試みた

A2199中心部: RMマップとRMヒストグラム

<u>・</u>磁場:単一の強度・スケール、確率1/2で反転するモデル ・電子密度:βモデルを考慮して RMの標準偏差から磁場を計算

	$\text{KBn}_0 r_c^{\frac{1}{2}} l^{\frac{1}{2}} \Gamma(3\beta - 0.5)$	K 定数(441)		
$\sigma_{\rm RM}(r)$	$= \frac{6\beta - 1}{\Gamma(3\beta)}$	n_0 銀河団のX線中心での電子密度		
	$\left(1+\frac{r^2}{2}\right)^4$ N PCP	<i>r</i> _c コア半径		
	$(-r_{c}^{2})$ (Govoni+.2010)	r 銀河団中心から電波源までの距離		
 観測値とパラメータの値		1 ランダム磁場のスケール		
σ	770.16 [rad/m ²]	β βモデルのパラメータ		
- <i>R</i>		※磁場は等方的であると仮定		
β	0.663	※磁場は等方的であると仮定 (√3B = B)		
β	0.663 $1.16 \times 10^2 h_{70}^{-1}$ [kpc]	※磁場は等方的であると仮定 $(\sqrt{3}B_{\parallel} = B)$		
β r_c n_0	$\begin{array}{c} 0.663 \\ 1.16 \times 10^{2} h_{70}^{-1} \text{ [kpc]} \\ 3.45 \times 10^{-2} [cm^{-3}] \end{array}$	※磁場は等方的であると仮定 $(\sqrt{3}B_{\parallel} = B)$ $\begin{pmatrix} l \\ 2 \end{pmatrix}$		
β β r_c n_0 r	$\begin{array}{c} 0.663 \\ 1.16 \times 10^2 h_{70}^{-1} \ [kpc] \\ 3.45 \times 10^{-2} \ [cm^{-3}] \\ 10h_{70}^{-1} \ [kpc] \end{array} \end{array}$	※磁場は等方的であると仮定 $(\sqrt{3}B_{\parallel} = B)$ ~ 2.27 $\left(\frac{l}{l}\right)^{\frac{1}{2}}$ [μG]		
β r_c n_0 r l	$\begin{array}{c} 0.663\\ 1.16 \times 10^2 h_{70}^{-1} \text{ [kpc]}\\ 3.45 \times 10^{-2} [cm^{-3}]\\ 10h_{70}^{-1} \text{ [kpc]}\\ 5 \text{ [kpc]} \end{array}$	* 磁場は等方的であると仮定 $(\sqrt{3}B_{\parallel} = B)$ ~ 2.27 $\left(\frac{l}{5 \ kpc}\right)^{\frac{1}{2}}$ [µG]		

Depolarization because of random magnetic fields

External Faraday Dispersion

Polarized

source

Plasma with random magnetic field (ICM)

 Because of frequency dependence of FR(Δθ∝ω⁻²), depolarization is more prominent in lower frequency (or longer wavelength).

$$p_{\rm EFD} = p_0 e^{-S}$$
$$S = 2\sigma_{\rm RM}^2 \lambda^4$$

Burn's law (Burn 1966) p_{EFD} : observed fractional polarization p_0 : intrinsic fractional polarization σ_{RM} : standard deviation of RM X-ray (red&yellow) 1369MHz (blue&contours) (Clarke&Ensslin 2006)

Abell 2256

- Well-known local (z=0.0581) merging cluster
- Two components in member galaxy l.o.s. velocity distribution (Berrington et al. 2002)
- Two distinct peaks in X-ray image(Briel et al. 1991, etc)
 Only one example of direct detection of ICM internal motions(~1500km/s) (Tamura et al. 2011)
 Radio halo and relics (Clarke&Ensslin 2006, etc)

Fractioal Polarization Spectra of A2256 Relic (Ozawa et al. 2015)

Fractional polarization spectra of the radio relic FPOL=p exp(-S), (Burn's law) p: intrinsic FPOL, S = $2\sigma_{RM}^2 \lambda^4$

Polarized

(radio relic)

source

simple EFD

 Fractional polarization specta have two distinct strucures (~0.8GHz, ~ 3GHz)

- Random magnetic field between the relic and us cause depolarization.
- However, a simple external Faraday dispersion (EFD) model cannot reproduce this kind of spectral shape.
- There might be two depolarization components ???

0 0

Plasma with random magnetic field (ICM)

Depolarization toward the A2256 Relic (Ozawa et al. 2015)

Summary

The intracluster magnetic field is investigated with X-ray and Rdaio observations.

- Radio halos and relics (Itahana's and Takanohashi's talks)
- Faraday rotation
- The magnetic field plays crucial roles in various process such as particle acceleration in the ICM
- A2199center (Takahashi master thesis)
 - Magnetic field estimation with Faraday rotation
- A2255 (Ozawa et al. 2015)
 - S- and X-band polarimetric observations with JVLA.
 - Fractional polarization spectra of the relic have characteristic structures, which can be reproduced assuming that two depolarization components are located along the line-ofsight.

Rotation Measure

Table 3. The average and standard deviation of RM.								
Target	$\langle \mathrm{RM} \rangle^*$	$\sigma_{ m RM}{}^*$	reference					
	$ m rad\ m^{-2}$	$ m rad\ m^{-2}$						
Relic	-44	7	Clarke & Ensslin (2006)					
Relic	-34.5	6.2	this work					
Source A	-24.9	65.5	this work					
Source B	-34.1	10.5	this work					

* (RM) and σ_{RM} are the average and standard deviation of RM, respectively.

 ϕ vs λ^2

RM>~ -30 rad/m²

This value is consistent with a contribution from the Galactic component

 In relic, σ_{RM} is significantly smaller than that of sources A.

 \rightarrow The relic is located in the nearer side of the observer in the cluster

Observations

TADIE 1. Details of the VLA & JVLA observations of Abell 2256.								
Frequency*	Bandwidth*	Config.*	Date	Time*	Project*			
(MHz)	(MHz)			(h)				
1369/1417	25/25	D	1999-Apr-28	5.9, 5.9	AC0522			
1513/1703	12.5/25	D	1999-Apr-29	3.5, 5.5				
1369/1417	25/25	С	2000-May-29	2.5, 2.5	AC0545			
1513/1703	12.5/12.5	С	2000-May-29	3.6, 3.6				
1369/1417	25/25	С	2000-Jun-18	2.5, 2.5				
1513/1703	12.5/25	С	2000-Jun-18	4.1, 3.5				
16 windows [†]	128	С	2013-Aug-25	1.2	13A-131			
S-band			2013-Aug-26	1.2				
<u> </u>			2013-Aug-29	1.2				
16 windows [‡]	128	С	2013-Aug-18	1.3	13A-131			
X-band			2013-Aug-19	1.3				

* Column 1: observing frequency; Column 2: observing bandwidth; Column 3: array configuration; Column 4: dates of observation; Column 5: time on source; Column 6: NRAO project code.

[†] 2051/2179/2307/2435/2563/2691/2819/2947/3051/3179/3307/3435/3563/3691/3819/3947.

[‡] 8051/8179/8307/8435/8563/8691/8819/8947/9051/9179/9307/9435/9563/9691/9819/9947.

multi-band polarimetric observations, to explore the magnetic field trough depolarization and rotation measure
 S-band (2051-3947MHz)
 X-band

(8051-9947MHz) August 2013, JVLA

 L-band (1369-1703MHz) archive data of VLA

Radio images

relic, source A--Z (point sources such as radio galaxies)
 In S-band, polarized components are detected from relic, A, and B
 In X-band, polarized components are detected only from source A (relic is out of FOV).

Merger geometry and relic formation scenario

Considering small σ_{RM} value, relic is likely located nearer side of us in the cluster.

This fact favors "Late phase scenario".

Clarke&Ensslin(2006)

Magnetic Fields toward Source A and B

Faraday Tomography for the relic

- Farady tolmography(QU-fit, Ideguchi et al. 2014) for the relic
- Two polaried sources at different Faraday depth are necessary.
- Note: In QU-fit, information about polarization angles is also used. However, we can locate polarized sources only in the Faraday depth space (not real space).