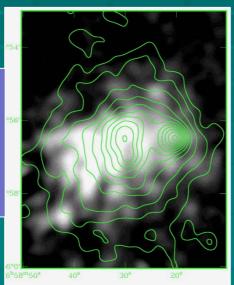

N-body + Hydrodynamical Simulations of Merging Clusters of Galaxies: Comparison with 1E0657-56

Motokazu Takizawa (Yamagata University, Japan)

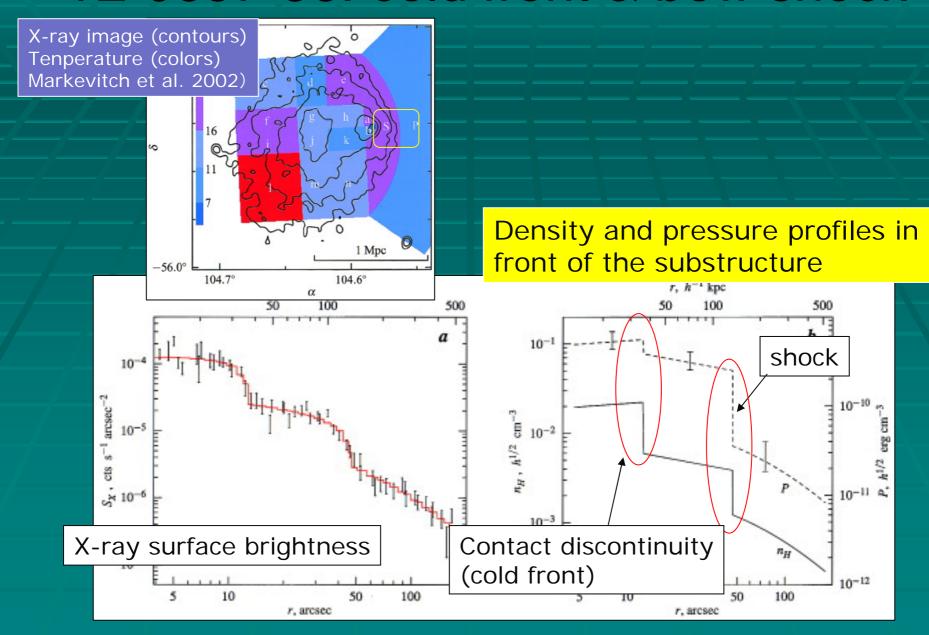
1E 0657-56 Cluster

X-ray image (Markevitch et al. 2002)

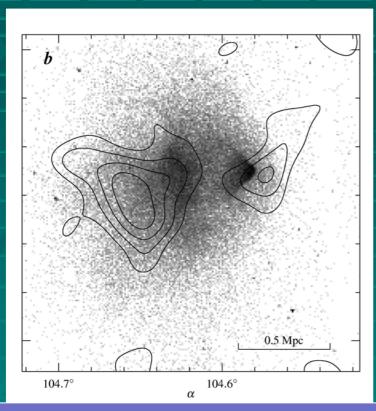


Liang et al. (2000)

Contour: X-ray


(ROSAT HRI)

Gray scale: radio



- z=0.296
- The hottest known cluster
 (~17keV)
- A very powerful radio halo
- First observational example of shocks in ICM
- Mass map through weak gravitational lensing

1E 0657-56: cold front & bow shock

1E 0657-56: mass distribution

X-ray image(gray scale)
Surface mass density(contours)
Clowe et al.(2004)

- Mass distribution is investigated through weak lensing.
- Clear offsets of the mass density peaks from the X-ray peaks are found.
- Distribution of the member galaxies is quite similar to that of mass.

Does this structure occur because the ICM experiences ram pressure but the dark matter and galaxies do not?

Numerical Method (N-body+Hydro)

- N-body: Particle Mesh(PM) method
- Self-gravity: FFT with isolated boundary conditions
- Hydrodynamics: Roe TVD method
 - zero gradient boundary conditions (but, only outflow is permitted)
- Number of the grid points 256 × 128 × 128
- Number of the N-body particles $256 \times 128 \times 128 (=4.2 \times 10^6)$
- VPP5000@NAOJ

Virialized Cluster Model

DM: NFW model, ICM: β model ($r_c = r_s/2$)

DM density profile

$$\rho_{\rm DM}(r) = \frac{\delta_c \, \rho_{c0}}{(r/r_s)(1 + r/r_s)^2},$$

ICM density profile

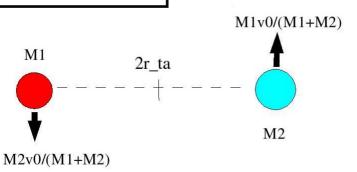
$$\rho_{\rm g}(r) = \rho_{\rm g,0} \left\{ 1 + \left(\frac{r}{r_{\rm c}}\right)^2 \right\}^{-\frac{3}{2}\beta}$$

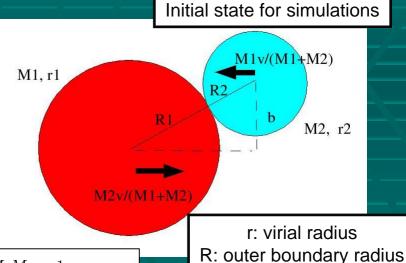
- $r \ge r_{vir}$ $\rho_{DM} = 0$ and $\rho_{gas} = constant$
- DM velocity distribution is an isotropic Maxwellian. Radial profile of DM velocity dispersion is determined from the Jeans equation.

$$rac{d}{dr}\Big(
ho_{
m DM}\sigma^2\Big) = -rac{GM_r}{r^2}
ho_{
m DM}$$
 with $\sigma^2(r_{
m out}) = rac{GM_r}{3r}\Big|_{r=r_{
m out}}$

$$\sigma^2(r_{\rm out}) = \frac{GM_r}{3r} \Big|_{r=r_{\rm out}}$$

•Radial profile of ICM pressure is determined from the hydrostatic equation.


$$\frac{dP}{dr} = -\frac{GM_r}{r^2} \rho_{\rm g}$$


$$rac{dP}{dr} = -rac{GM_r}{r^2}
ho_{
m g}$$
 with $P(r_{
m out}) = rac{1}{eta}rac{GM_r
ho_g}{3r}\Big|_{r=r_{
m out}}$

$$r \le r_{out} M_{gas} / (M_{gas} + M_{DM}) = 0.1$$

How to make initial conditions

Maximum expansion for mergers

energy conservation
Angular momentum conservations

$$-\frac{GM_1M_2}{2r_{ta}} + \frac{1}{2}Mv_0^2 = -\frac{GM_1M_2}{R_1 + R_2} + \frac{1}{2}Mv^2$$
$$2Mv_0r_{ta} = Mvb$$

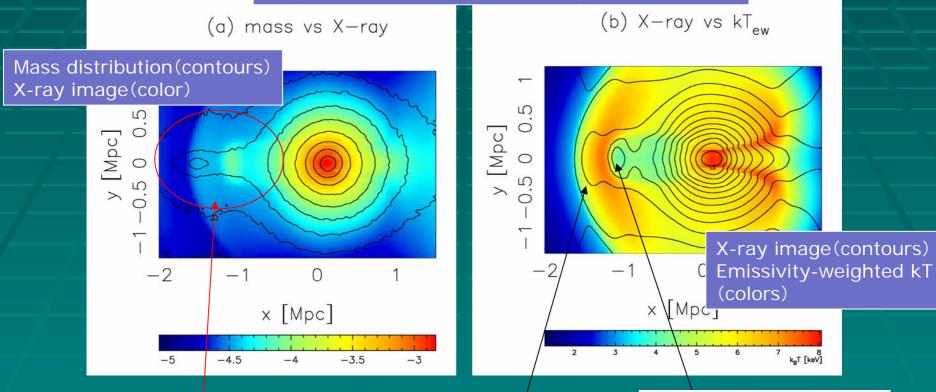
Using scaling relation R \propto M^{(5+n)/6} and r_{ta} = 2 r_{vir} (Spherical collapse model), we obtain the following equations

$$v^{2} = \frac{2GM_{1}}{R_{1}}(1+\alpha) \left\{ \frac{1}{1+\alpha^{(5+n)/6}} - \frac{1}{4(1+\alpha)^{(5+n)/6}} \frac{R_{1}}{r_{1}} \right\} \left\{ 1 - \frac{1}{16(1+\alpha)^{(5+n)/3}} \left(\frac{b}{r_{1}}\right)^{2} \right\}^{-1}$$

$$\alpha = \frac{M_{2}}{M_{1}}$$

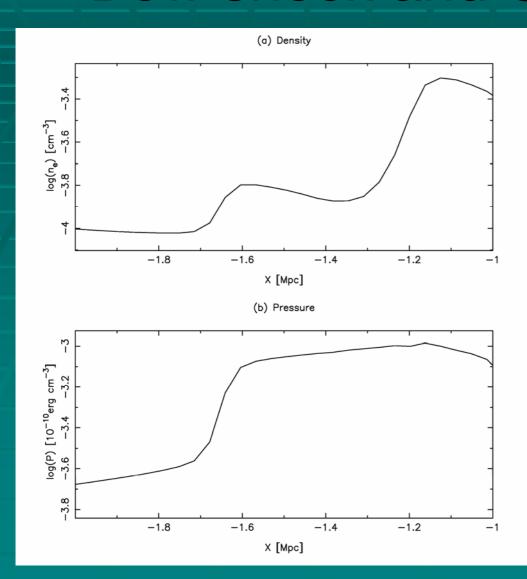
$$\lambda \equiv \frac{J|E|^{1/2}}{G(M_1 + M_2)^{5/2}} = \frac{vb}{(GM_1R_1)^{1/2}} \frac{\alpha^{3/2}}{(1+\alpha)^{7/2}} \left\{ \frac{1}{1+\alpha^{(5+n)/6}} - \frac{R_1v^2}{2GM_1} \frac{1}{1+\alpha} \right\}^{1/2}$$

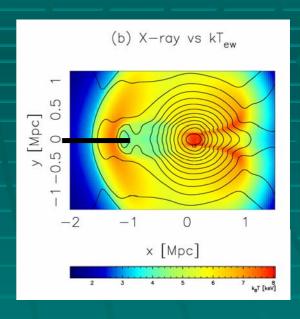
$$(M_1,r_1,R_1,\alpha,n,\lambda)$$
 \downarrow
 (v,b)


Comparison with 1E0657-56

Head on merger with mass ratio=16:1, 1Gyr after the core passage

Bow shock


Cold front


(contact discontinuity)

X-ray peak lagged behind mass peak

Bow shock and Cold Front

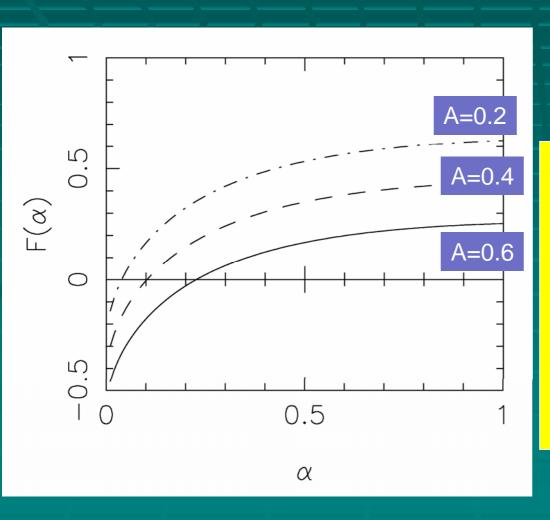
Discussion on the Rum Pressure Stripping Conditions (1)

Consider the head-on merger of two NFW clusters with masses M_1 and M_2 ($M_1>M_2$). If the gravity on the subcluster's ICM is weaker than the rum pressure force, the ICM will be stripped from the subcluster's potential.

$$\frac{Gm_2\rho_2}{r_2^2} < A(\pi r_2^2 \rho_1 v^2)(\frac{4}{3}\pi r_2^3)^{-1},$$

r_{1,2}: virial radius ρ_{1,2}: central gas density r₂: scale radius m₂: mass inside r₂ A: fudge factor of an order of unity, likely A<1

Collision velocity v
$$v^2 \simeq \frac{2G(M_1+M_2)}{R_1+R_2},$$


Introduce a new parameter $\alpha \equiv M_2/M_1$. Then, $R_2/R_1 = \alpha^{1/3}$, $\rho_1/\rho_2 = \alpha^{-x}$ (in the Λ CDM, x~0.25). The above-mentioned condition becomes

$$F(\alpha: M_1) \equiv \alpha^{2/3 - x} \frac{1 + \alpha^{1/3}}{1 + \alpha} - \frac{3A}{2g(\alpha M_1)c(\alpha M_1)} < 0.$$

 $c=r_2/R_2$ oncentration parameter

$$g(M_2) \equiv \frac{m_2}{M_2} = \frac{\ln 2 - 1/2}{\ln(1+c) - c/(1+c)},$$

Discussion on the Rum Pressure Stripping Conditions (2)

F(α)<0: ram pressure dominant $\alpha = M_2/M_1$

When α is less than \sim 0.1, ram pressure dominates the gravity.

ICM is more easily stripped from the less massive subcluster.

Discussion on the Rum Pressure Stripping Conditions (3)

- Ram pressure ≪gravity
 - Gas behaves like DM.
 - DM peaks will correspond with X-ray peaks.
- Ram pressure >> gravity
 - ICM in the substructure cannot penetrate the larger cluster's center.
 - The larger cluster's ICM is so hot that it cannot be bound by the substructure's potential.
 - Mass peaks are associated with no X-ray peaks.
- Ram pressure ≒gravity
 - Clear off-set of the mass peak from the X-ray peak

Summary

- We study dynamical evolution of merging clusters of galaxies using N-body + hydrodynamical simulations.
- We investigate the X-ray and mass structures in the merging galaxy cluster 1E0657-56.
- We first reproduce a clear off-set of an X-ray peak to a mass peak in N-body + hydrodynamical simulations.
- We discuss the ram pressure-stripping conditions in the mergers of two clusters with an NFW density profile using a simple analytic model.
 - ICM is more easily stripped from the smaller subclusters.
 - The ram pressure dominates the gravity of the substructure when the smaller cluster's mass is less than approximately one tenth of the larger cluster's mass.
- The characteristic X-ray and mass structures found in 1E0657-56 suggest that the mass ratio between the progenitors is close to the above-mentioned critical value.