すざく衛星を用いた銀河団の 広帯域・多波長観測

広帯域: Abell2319 (Sugawara et al., PASJ in press, arXiv:09091358)

多波長: ZwCl0803.2+0425周辺領域

滝沢元和、菅原知佳、渡邉 瑛里(山形大) 中澤知洋(東京大)、岡部信宏(ASIAA)、川原田円(理研) 浜名崇、宮崎聡(国立天文台)

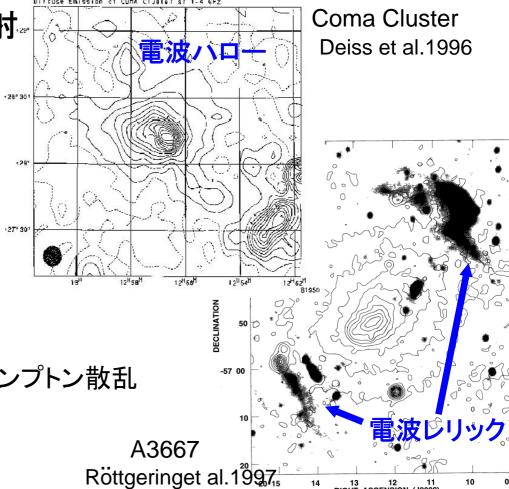
広帯域: Abell2319 Sugawara et al., PASJ in press, arXiv:09091358

Introduction 銀河団の高エネルギー現象

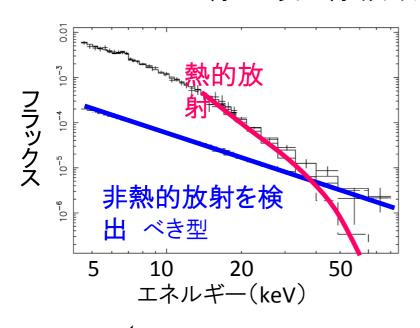
銀河団は、衝突・合体を繰り返しながら成長している

衝突銀河団からの非熱的放射。

◆ シンクロトロン放射 銀河団スケールにひろがる γ~10⁴の電子と0.1-10 µ G の磁場の相互作用


銀河団の衝突・合体

粒子加速


高エネルギー粒子が存在

CMB光子との逆コンプトン散乱 (硬X線)は?

硬X線観測

Coma ClusterのX線~硬X線領域のスペクトル

Beppo-SAXによって Coma Clusterから、 非熱的な硬X線放射 を検出した? Beppo-SAX(1996-2002)

シンクロトロン放射している電子が、 宇宙背景放射の光子(CMB)を 逆コンプトン散乱したもの

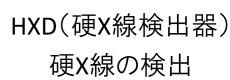
Beppo-SAX/ vs < SUZAKU すざく衛星では、

非熱的成分は検出されていない、、

Wik et al. (2009)

これまでに明らかに硬X線領域の

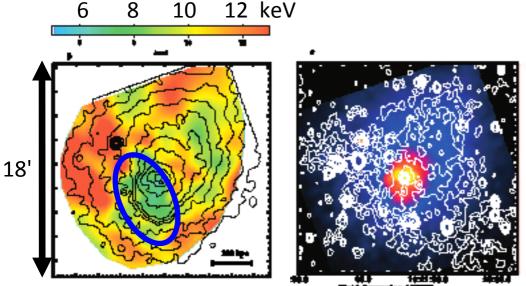
非熱的成分が検出された例はない!!


すざく(2005~)

研究目的

衝突・合体中の銀河団ガスの中の電子 粒子加速 熱的 非熱的 keV電 GeV電- 衝擊波? 乱流? 制動放射 逆コンプトン散乱 シンクロトロン放射 電波 X線 硬X線

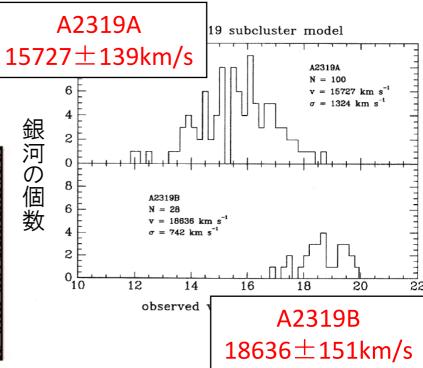
XIS(X線CCDカメラ) ガスの構造・運動


衝突・合体している銀河団をすざく衛星で観測し、 銀河団ガスの構造や進化を探る⇒粒子加速機構の解明

Abell 2319銀河団

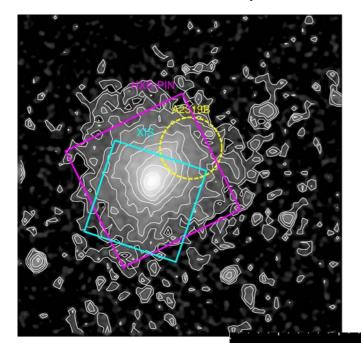
赤径 19h21m12s 赤緯 43°56′45″ redshift 0.0557

特徴


- ●視線方向に二つのグループ
- ●非一様な温度分布とコールドフロント
- ●ひろがった電波ハロー

左:X線(コントア)温度分布(カラー)

右:X線(カラー)電波(コントア) Govoni et al.2004


銀河の視線速度分布

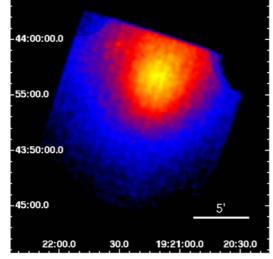
後退速度(km/s)

Oegerle et al.1995

すざく衛星による観測

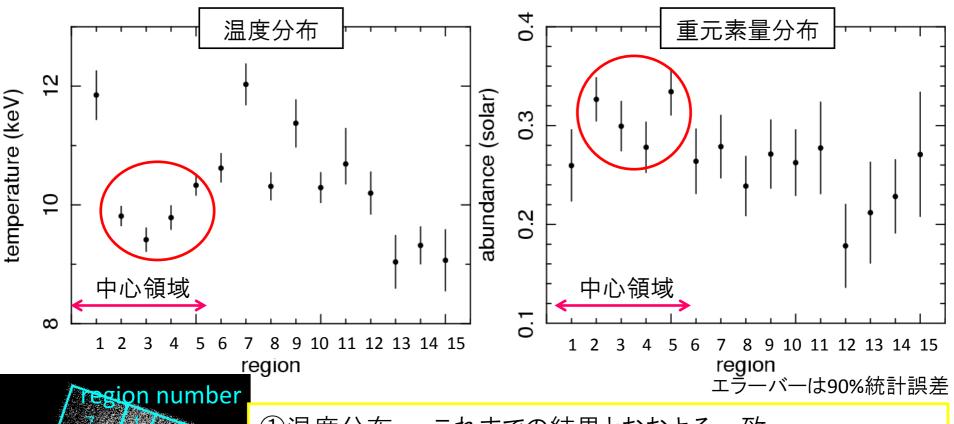
ROSAT衛星によるX線画像に すざく衛星の視野を重ねたもの マゼンダ:HXD PIN、水色:XIS 黄色:A2319Bサブグループ

- ●観測日:2006年10月27日から 2006年10月30日
- ●有効観測時間:


XIS 99.5ksec HXD/PIN 93ksec

●電荷注入(SCI) ON観測

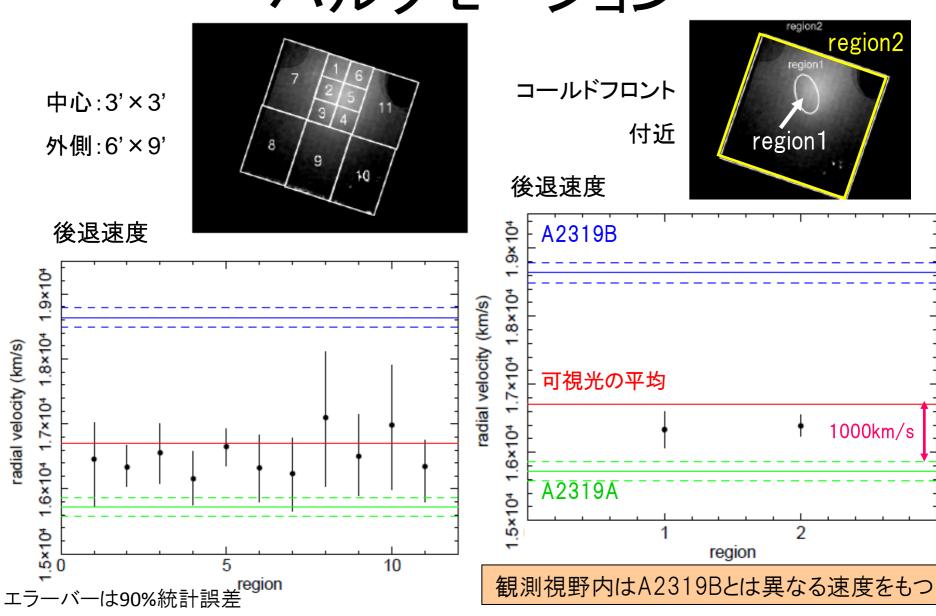
目的


✓XISとHXDを組み合わせた広 帯域スペクトル解析から非熱的 硬X線や超高温成分を探査する

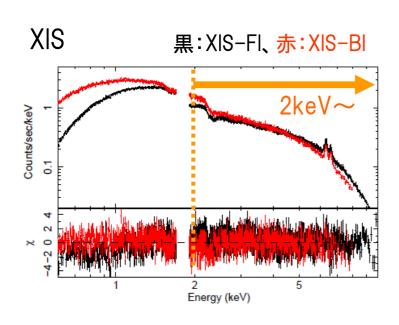
✓磁場強度の下限値を得る

すざく衛星による 前面照射型X線CCD カメラのX線画像

温度とアバンダンス

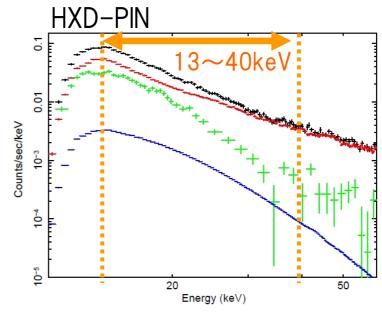

①温度分布・・・これまでの結果とおおよそ一致

13


15

- ②重元素分布・・・中心が高く外側が低い傾向、我々が初めて
- ③中心領域に温度が低く重元素量の多い領域が存在 ⇒過去に衝突・合体したガスの生き残り?

バルクモーション



広帯域スペクトル解析①

使用するエネルギー帯域

- ●XIS-FI---2.0 10.0keV
- ●XIS-BI • 2.0 8.0keV
- ●HXD-PIN---13.0 40.0keV

黒:データ、赤:NXBモデル

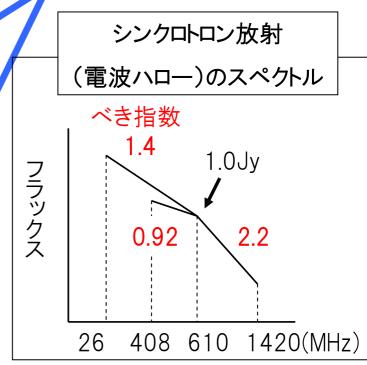
緑:(データ)-(NXB)、青:CXBモデル

HXD-PINのバックグラウンド

●非X線バックグラウンド(NXB)

●宇宙X線背景放射(CXB)

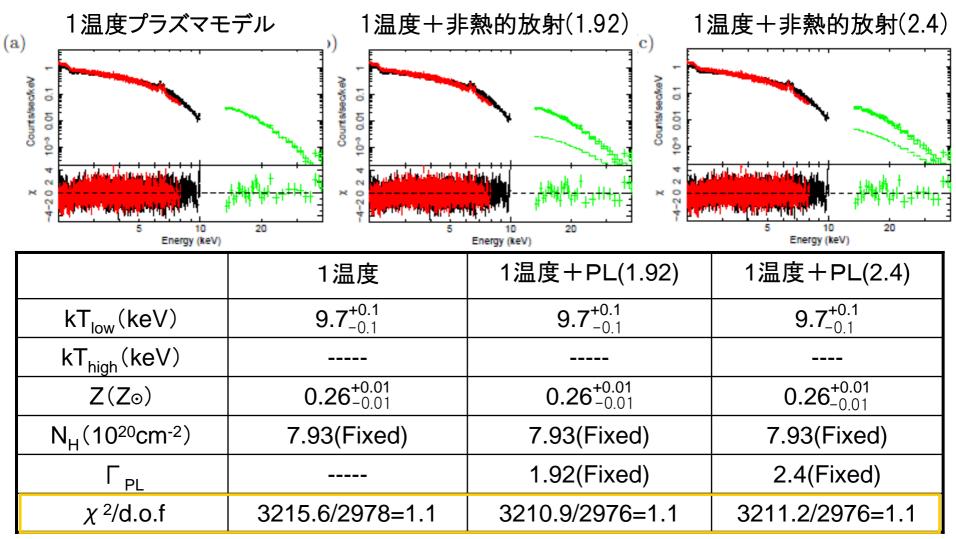
NXB: ±4.5%、CXB: ±18%振って影響を系統誤差として評価する


広帯域スペクトル解析②

使用したモデル

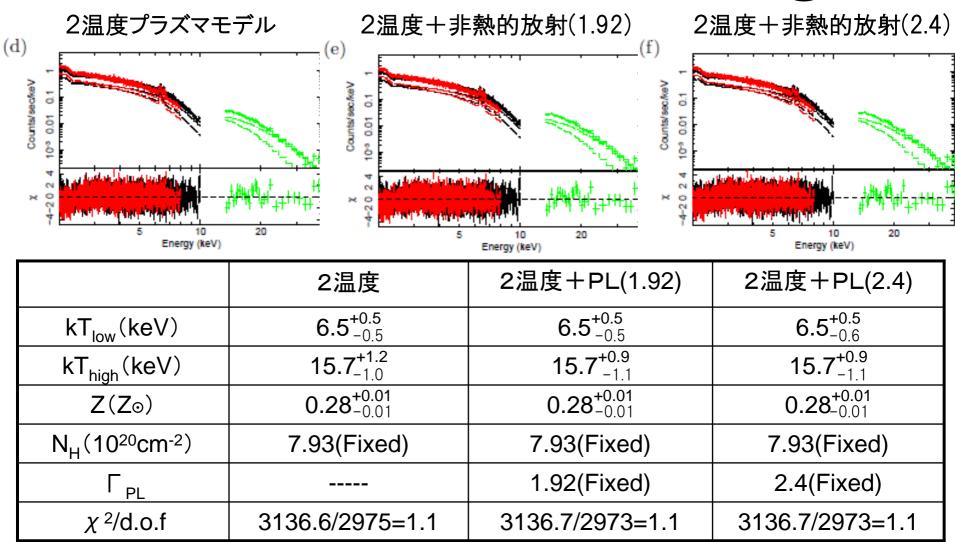
- ①1温度プラズマモデルWABS×APEC
- ②1温度プラズマ+<u>非熱的放射</u>モデル WABS×(APEC+POWERLAW)
- ③2温度プラズマモデル WABS×(APEC+APEC)
- ④2温度プラズマ+ 非熱的放射モデル ► WABS×(APEC+APEC+POWERLAW)

シンクロトロン放射 している電子による


逆コンプトン散乱

非熱的放射は、電波放射から予想されるphoton indexをとる

磁場を0.1-1.0 µ Gと仮定すると、数十~数百MHz ⇒ 1.4と0.92を採用


スペクトルフィットの結果①

エラーは90%統計誤差

どのモデルも結果に大差ない⇒非熱的成分を積極的に入れる必要がない

スペクトルフィットの結果②

エラーは90%統計誤差

非熱的硬X線のFlux上限値

モデル

1温度+非熱的放射(1.92) 2.4)

2温度+非熱的放射(1.92、2.4)

系統誤差の評価

非X線バックグラウンド(NXB)・・・±4.5%振って影響を考慮する

宇宙X線背景放射(CXB)・・・±18%振って影響を考慮する

◆10-40keVの非熱的硬X線のFlux上限値

$$F_{\rm IC} < 2.6 \times 10^{-11} \ {\rm erg \ cm^{-2} \ s^{-1}}$$

他衛星との比較

Beppo-SAX (Molendi et al. 1999)

(Suzaku換算で)2.9×10⁻¹¹ erg cm⁻²s⁻¹ ただし視野はずっと広い

Swift (Ajello et al. 2009) 99%、50-100keVを90%、10-40に換算

Swift单独 2.9×10⁻¹² erg cm⁻²s⁻¹

Swift+XMM 1.7×10^{-12} erg cm⁻²s⁻¹

ちなみに1mCrabは~1.6×10⁻¹¹ erg cm-²s⁻¹ ちょっと低すぎないか???

磁場強度の下限値

◆シンクロトロン放射と逆コンプトン散乱の関係

先行研究による 磁場強度(μG)

$$\frac{F_{\rm IC}}{F_{\rm sync}} = \frac{U_{\rm CMB}}{U_B} = \frac{U_{\rm CMB}}{B^2/8\pi}$$

◆CMB光子のエネルギー密度

$$U_{\text{CMB}} = 4.2 \times 10^{-13} (1+z)^4$$
 Swi
= $5.2 \times 10^{-13} \text{ erg cm}^{-3} (z = 0.0557)$

Beppo-SAX(1.92)	0.04
Beppo-SAX(2.2)	0.035
Swift(1.92)	0.1
Swift/XMM-Newton(1.92)	0.15

Beppo-SAX:90%信頼度

Swift:99%信頼度

◆シンクロトロン放射(電波)のFlux

$$F_{\text{synch}} = 2.3 \times 10^{-13} \times B^{0.08} \text{ erg cm}^{-2} \text{ s}^{-1}$$

◆逆コンプトン散乱(硬X線)のFluxの上限値

$$F_{\rm IC} < 2.6 \times 10^{-11} \ {\rm erg \ cm^{-2} \ s^{-1}}$$

磁場強度の下限値

 $B > 0.19 \mu G$

1温度+非熱的放射(べき1.92)

エネルギー密度

熱的な粒子のエネルギー密度

●先行研究(ROSAT衛星の観測)に よる電子密度から、

$$U_{\rm th} = 0.4 \times 10^2 \text{ eV/cm}^3$$

Abell 2319銀河団の電波ハロー ### 1922 00 21 45 30 15 00 20 45 30 15 00 1

16arcmin

磁場のエネルギー密度

すざく衛星による磁場強度の下限値0.2 μ Gから、

$$U_B > 0.1 \times 10^{-2} \text{ eV/cm}^3$$

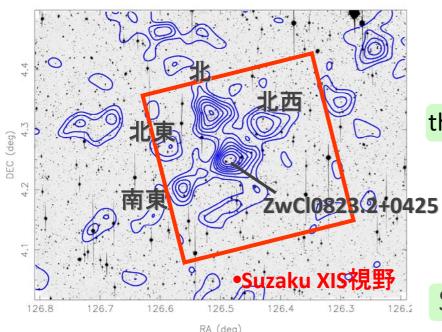
 $\frac{U_{\text{th}}}{U_B} < 2.0 \times 10^3$

相対論的な電子のエネルギー 密度

●すざく衛星による非熱的硬X線の flux上限値から、

$$U_e < 0.2 \times 10^{-1} \text{ eV/cm}^3$$

 $\frac{U_{\text{th}}}{U_e} > 4.0 \times 10^4$


Feretti et al.1997

粒子加速シナリオ

- cold front を伴った低温・高アバンダンス領域--->過去に吸収された小銀河団のcool coreの名残?
- 超高温成分は卓越せず。XISの視野内の速度差 (940+1083₋₁₁₃₁km/s)は音速(1700km/s)より小さい。--->衝撃波は発達していない。A2319Bとの衝突はまだそこまで近づいていない。
- cold frontに関係ある過去のmergerで引き起こされ た乱流による粒子加速がもっともらしい。

多波長: ZwCl0803.2+0425周 辺領域

ZwCl0823.2+0425銀河団周辺領域

可視光写真(白黒)に 質量分布のコントア(青)を重ねた図。 Okabe et al. 2009 より

Suzaku XISの視野に小型ダークマター ハローがたくさん入る! 赤経:08h25m57.83s 赤緯:04°14m48.3s Redshift 0.2248

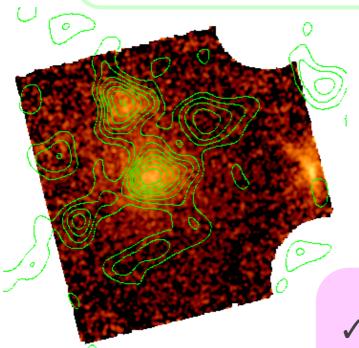
the Local Cluster Substructure Survey(LoCuSS)

- * 周辺部に小型のダークマターハローが存在
 - ・北, 北東, 北西, 南東 の4方向
 - 特にZwCl0823.2と北に強い質量コントア

Slone Digital Sky Survey (SDSS)

・北、北東 z=0.472
・ZwCl0823.2, 北西 z=0.2248
(・南東 z=0.10318)

✓ 少なくとも2つの大規模構造が 重なっている。

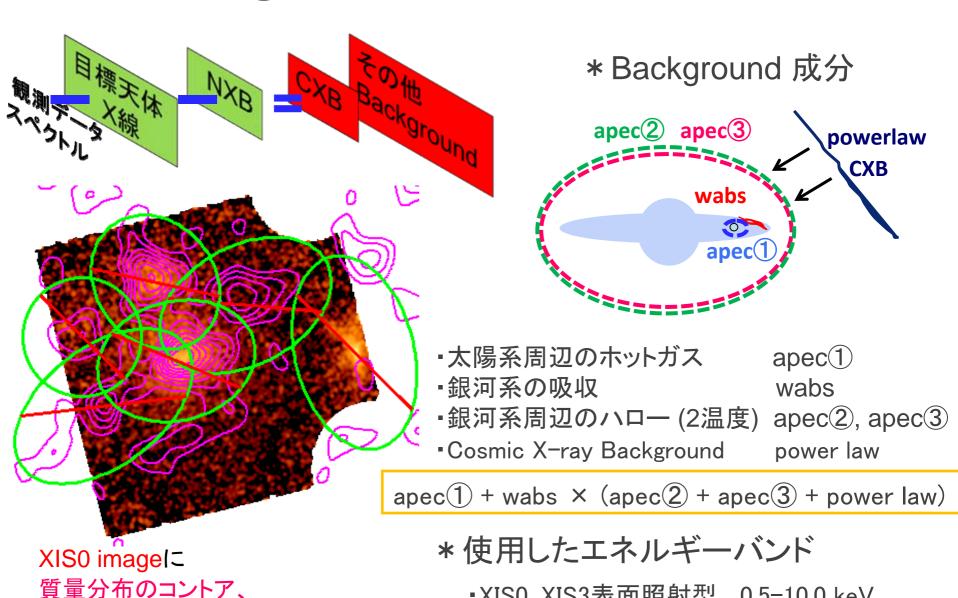

Observation

AO-3期

○観測日 2008年05月17日~ 2008年05月18日

○有効観測時間 XIS 41.3ksec

○電荷注入(SCI) ON観測

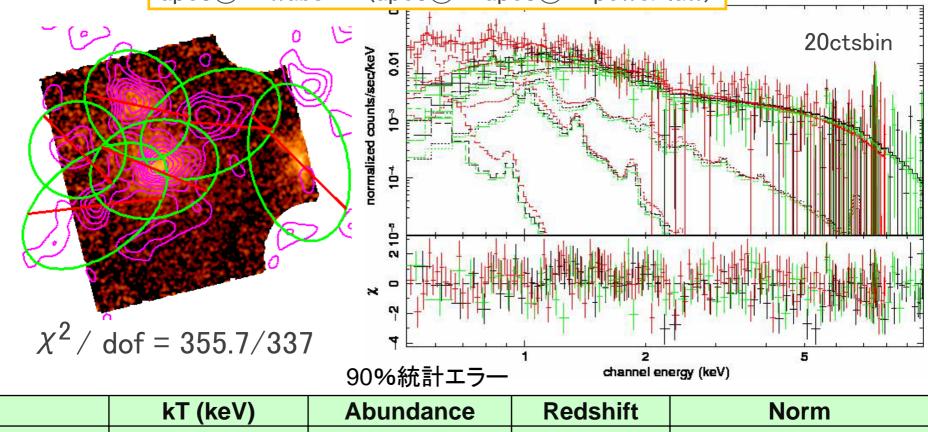

Suzaku XISO image に 質量分布のコントア(緑)を 重ねたもの

- * ZwCl0823.2+0425. 北
 - •質量大 •強いX線放射
- *北東
 - 質量小・かすかなX線放射
- *北西,南東領域
 - •質量中 •X線放射があまり見られない
 - ✓質量分布は積分量であること
 - ✓生データでコントアを作成していること

目的

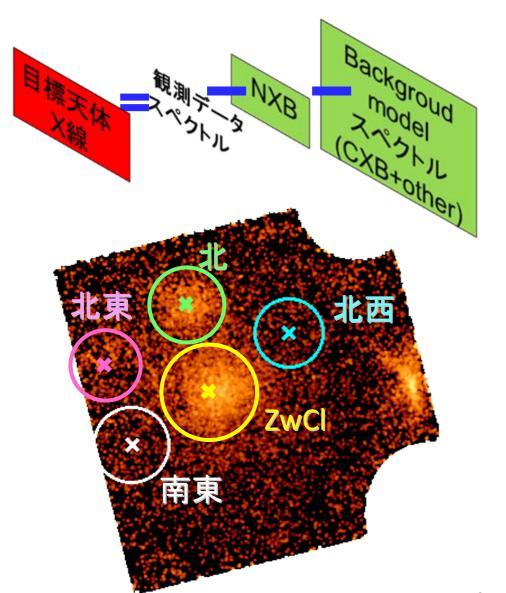
- ✓ 小型ダークマターハローの温度、アバンダンス Luminosityをしらべる
- ✓ Lx-kT , M-kT relationを調べる。
- ✓北西、南東領域についてはX線放射の上限値

Background modelの作成


切り抜いた領域(緑)を重ねた図 •XIS1裏面照射型

-XIS0, XIS3表面照射型 0.5-10.0 keV

0.5-8.0keV


Background 解析結果

 $apec 1 + wabs \times (apec 2 + apec 3 + power law)$

	kT (keV)	Abundance	Redshift	Norm
APEC1	0.08(fixed)	1.0(fixed)	0.0(fixed)	1.08e-2 (6.83e-3, 1.47e-2)
APEC2	0.33 (0.28, 0.38)	1.0(fixed)	0.0(fixed)	6.02e-4 (4.01e-4, 7.89e-4)
APEC3	1.74 (1.48, 2.32)	1.0(fixed)	0.0(fixed)	6.05e-4 (4.19e-4, 8.45e-4)

各天体の解析方法

*スペクトルフィットモデル

・銀河団、各ハローからの放射 apec

・銀河系による吸収

wabs

wabs × apec

*フィットに使った領域

弱重カレンズ解析の結果から

-ZwCl0823銀河団 2.5min

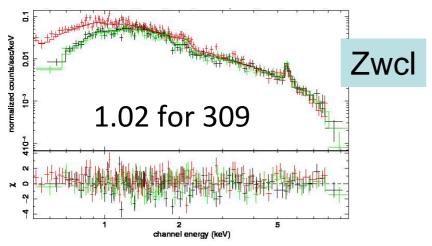
•北,南東

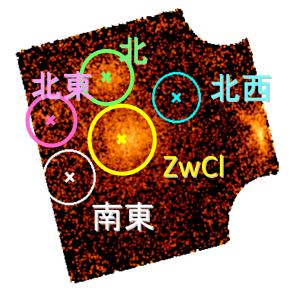
2min

・北東,北西

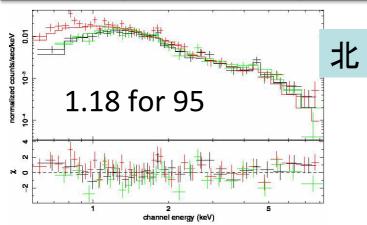
1.8min

* 使用した エネルギーバンド

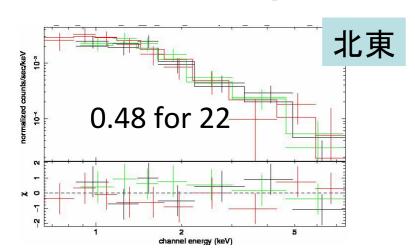

•XIS0, XIS3 0.5-10.0 keV


XIS1

0.5-8.0keV

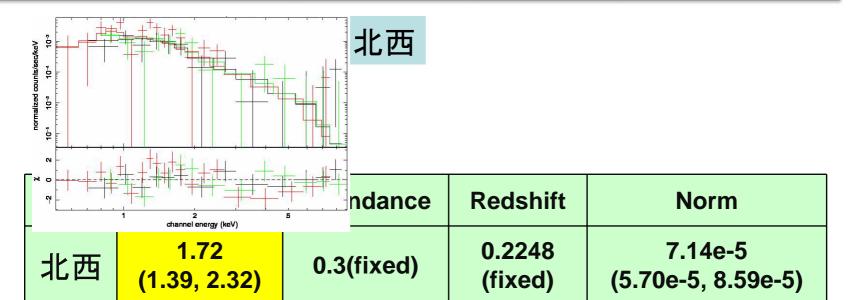

* ZwCl0823.2, 北, 北東はbeta-modelを仮定したARFを使用

解析結果 (1)



	kT(keV)	abundance	redshift	norm
40ctsbin	4.68	0.34	0.2248	3.23e-3
	(4.46 4.90)	(0.27 0.41)	(fix)	(3.16e-3 3.34e-3)

40ctsbin①	5.59	0.40	0.472	1.45e-3
	(4.97 6.36)	(0.20 0.64)	(fixed)	(1.37e-3 1.53e-3)


解析結果(2)

南東のフィット * イベント数が足りずフィットができなかった。

	kT(keV)	abundance	redshift	norm
40ctsbin	3.80	0.3	0.472	2.29e-4
	(2.82 5.36)	(fixed)	(fixed)	(2.93e-4 3.01e-4)

Ix-kT relation and M-kT relation

Lx-kT relation: 観測的に知られている相関関係。

$$Lx/E(z) \propto k_B T^{2.5-3.0}$$

M-T relation : 単純なself-simular modelから銀河団の質量と温度の相関関係。

$$ME(z) \propto k_B T^{1.5}$$

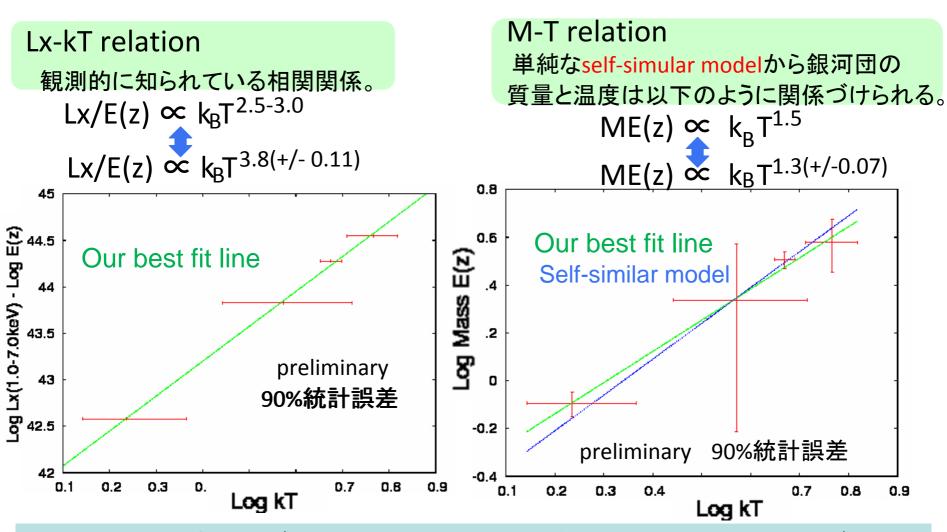
ただし、
$$E(z)=\{\Omega_m(1+z)^3+\Omega_{\Lambda}\}^{0.5}$$

The Simple Self-similar Model (Kaiser 1986)

✓銀河団のガスの温度はvirial温度

$$kT \propto \frac{M}{R}$$

✓銀河団はclustering scenarioに基づいて形成


✓X線銀河団の構造は自己相似である

$$\rho_{\rm gal} \propto \rho_{\rm dark} \propto \frac{M}{R^3}$$

$$L_X \propto \rho_{\text{gal}}^2 R^3 T^{1/2}$$

観測結果とは異なることがわかっている。

Lx-kT relation and M-kT relation

Lx-kTは先行研究からずれている。M-T relation も self- similar modeからずれている(約3 σ)。(ただし系統誤差、必ずしも独立した銀河団とはいえないことなど、考慮すべきことは多い)

まとめ

- 電波ハローを持った衝突銀河団と考えられているAbell 2319銀河団をすざく 衛星で観測した。
 - cold frontそばに低温・高アバンダンス領域。
 - 観測領域内のICMの視線速度はA2319Aと一致。領域内での速度差は亜音速。
 - $-F_{IC}$ <3 × 10⁻¹¹erg s⁻¹cm⁻² (90%, 10-40keV), B>0.2 μ G
 - 粒子加速は衝撃波よりは乱流によるのがもっともらしい。
- LoCuSSで複数のダークマターハローが確認されているZwCl0803.2+0425周 辺領域をすざくで観測した。
 - 各ダークマターハローのスペクトル解析をおこなった。
 - L-Tは典型的な過去の結果とずれている。M-Tも自己相似もでるとはずれている。 ただし、系統誤差はまだ考慮していない。また、各ダークマターハローは必ずしも 独立した銀河団とはいえず、解釈には注意が必要。