Galaxy clusters at z~1 imaged by ALMA with the Sunyaev-Zel'dovich effect

滝沢元和

山形大宇宙理論グループ談話会(2023.10.27)

T. Kitayama, S. Ueda, N. Okabe, T. Akahori, M. Hilton, J. P. Hughes, Y. Ichinohe, K. Kohno, E. Komatsu, Y.-T. Lin,
 H. Miyatake, M. Oguri, C. Sifon, S. Takakuwa, <u>M. Takizawa</u>, T. Tsutsumi, J. van Marrewijk, E. J. Wollack
 Publications of the Astronomical Society of Japan, 2023, 75, 311

Introduction

Yoshikawa et al. (2003)

- •標準的な構造形成理論によれば、
- 宇宙の構造は小さなものから大きな ものへ(bottom up scenario)
- Cold Dark Matter
- Dark Halo, filaments
- ・バリオン (CDMの重力ポテンシャ ルで加熱)
 - 一部は冷えて銀河、星へ
 - 大部分は高温ガスに
 (X-ray, Sunaev-Zel'dovich効果)

銀河団などの高温ガスによる逆コンプトン散乱で
 Cosmic Microwave Background (CMB) のスペクトルが変形。
 ・ミリ波帯(R-J側)ではdecrement
 ・サブミリ波帯(Wein側)ではincrement

Thermal, Kinematic, and others

- Thermal SZE: Maxwell分布をした熱電子によるCMBスペクト ルの変形。(Sunyaev&Zel'dvich 1972)
- Kinematic SZE: CMBに対するガス雲の運動によるCMBスペクトルの変形(Sunyaev&Zel'dvich 1980)
 ------普通はせいぜいここまで------
- Non-thermal SZE: 非熱的電子による (Blasi et al. 2000, Colafrancesco et al. 2003など)
 Grad-T SZE: 熱伝導による (Hattori&Okabe 2005)

S Z 効果: 波長依存性

Thermal SZ

$$\Delta I_{th} = i_0 yg(x)$$

$$f = f^2 U$$

$$i_0 = 2(kT_{cmb})^3 / (hc)^2$$

$$x = (hv/kT_{cmb})$$

$$y = \int \left(\frac{kT_e}{mc^2}\right) n_e \sigma_T dl,$$

$$g(x) = \frac{x^4 e^x}{(e^x - 1)^2} \left[\frac{x(e^x + 1)}{e^x - 1} - 4\right],$$

Kinematic SZ $\Delta I_{th} = -i_0 h(x) (V_r/c) \tau$ ただし、 $V_r l t 遠ざかる時を正とし、$ $\tau = \sigma_T \int n_e dl$ $h(x) = \frac{x^4 e^x}{(e^x - 1)^2},$

多波長観測することで原理的には両者は分離可能。

Thermal vs Kinematic SZ

The measured SZ spectrum of A2163 (Holzapfel et al 1997; LaRoque et al. 2002)

(Thermal) SZE vs X-ray

```
I<sub>x</sub> ∝∫n<sub>e</sub><sup>2</sup> T<sub>e</sub><sup>1/2</sup> dl
I<sub>sz</sub>∝∫n<sub>e</sub> T<sub>e</sub> dl
X線は密度構造、SZEは圧力構造の良いprobe。
```

両者を組み合わせるとイメージングデータのみから温度の情報を求められる。

I_x ∝ (1+z)⁻⁴
I_{sz}∝(1+z)⁰ (U_{CMB} ∝ (1+z)⁴なため)
high z object にはSZEが相対的に有利

z~1付近の遠方銀河団ではX線のスペクトル解析で温度分布を出すのは難しい。SZ+Xのジョイントイメージ解析が現状唯一の可能性

SZE vs X-ray maps of RX J1347.5-1145

150GHz, NOBA on Nobeyama 45m 13" beam, 15" smoothing (Komatsu et al. 2001) Contours: Chandra X-ray (Allen et al. 2002)

350GHz, SCUBA on JCMT 15m 15" beam, 15" smoothing (Komatsu et al. 1999)

観測天体 (RCS J2319+0038, HSC J0947-0119)

• RCS J2319+0038

- Red-Sequence Cluster Surrvey(Gladders & Yee 2005)で発見
- z=0.90
- Chandraでガス密度分布と平均温度 (*kT* = 6.2^{+0.9}_{-0.8}keV)が得られている。
- HSC J0947-0019
 - Hyper-Suprime-Cam Subaru Strategic Program (Miyazaki et al. 2018)で発見(やり 方はRed-Sequenceを用いている)
 - z=1.11
 - X線観測データはなし

Atacama Large Millimeter/Submillimeter Array (ALMA)

- ミリ波・サブミリ波で最高の感度・分解能を誇る電波干渉計
- 12m-Array (50台)、7m-Array(12台+12mを4台)
- •2011年より初期運用開始、2013年より本格運用
- 東アジア、米、欧、チリによる国際共同プロジェクト

Table 1. Summary of ALMA observations.						
	RCS J2319+0038		HSC J0947-0119			
	12 m	7 m	12 m	7 m		
Project code	2019.1.0	00673.S	2018.1.00680.S			
Field center	(23 ^h 19 ^m 53 ^s 280, 0°38'13''400)		$(9^{h}47^{m}58^{s}.565, -1^{\circ}20'05''.780)$			
Number of pointings	7	7	7	7		
Observation start	2019 Nov 15	2019 Oct 22	2019 Jan 14	2018 Nov 28		
Observation end	2019 Nov 22	2020 Jan 2	2019 Jan 20	2019 May 13		
Total on-source time [h]	12.1	78.6	8.0	64.5		
Number of antennas	43-47	9–11	46-51	9–12		
Central frequency [GHz]	92	92	92	92		
Band widths [GHz]	7.5	7.5	7.5	7.5		
Baseline coverage $[k\lambda]$	4.2–147	2.5-16.3	4.2–120	2.5-16.3		

Table 2. Properties of the synthesized images from a range of baselines.

	RCSJ2319+0038			HSC J0947-0119				
	>15kλ	12 m	7 m	All*	>15kλ	12 m	7 m	All*
Beam major axis FWHM ["]	3.14	3.60	18.7	3.76	3.16	3.63	17.8	3.77
Beam minor axis FWHM ["]	2.82	3.25	11.9	3.38	2.71	3.11	11.2	3.22
Beam position angle $[$ [°] $]$	82.2	82.6	-86.1	82.5	- 90.0	- 89.1	- 84.4	- 89.1
Average 1σ noise [μ Jy beam ⁻¹]	5.6	5.0	19.4	4.8	5.8	5.1	21.0	5.0

*The 1σ noise for all baselines after smoothing to 5" FWHM is 5.8 μ Jy beam⁻¹ and 5.9 μ Jy beam⁻¹ for RCS J2319+0038 and HSC J0947-0119, respectively.

- 2018年11月-2019年
 11月にかけて観測。
 - RCS J2319
 - 12m-array \sim 12.1h 7m-atrray \sim 78.6h
 - HSC J0947

12m-array \sim 8.0h 7m-atrray \sim 64.5h

• Band3

- 中心波長 **92GHz**
- 帯域幅7.5GHz
- 合成ビームサイズ
 - •おおよそ3.7"x3.3"

ACT (SZE)

RCS J2319+0038: Multi-wavelength view

- ALMAのSZEマップ、Chandra のX-ray imageは位置と形状(楕円の軸比、方 位角)でおおむね一致。
- galaxy distributionのメインコンポーネント、weak lensing signal (marginally detected)の位置もおおむね一致。
- $M_{500} = 3.6^{+4.6}_{-2.2} \times 10^{14} h_{70}^{-1} M_{\odot}$
- ACTのSZEは有意にずれている。ただし検出の有意度がそもそも低く、
 CMBの空間変動で説明がつく。

HSC J0947-0119: Multi-wavelength view

- ALMAのSZEマップの形状は楕円状
- ALMAのSZマップ、galaxy distributionのメインコンポーネン ト、weak lensing signal (marginally detected)の位置もおおむね一致。

$$M_{500} = 2.6^{+3.2}_{-1.4} \times 10^{14} h_{70}^{-1} M_{\odot}$$

• ACTのSZEの位置もおおむね一致。

Azimuthaly averaged SZE profile

- 東西南北4方向に分けて方 位角方向で平均化したSZE
 profileを比較
- おおよそ東西方向に伸びた 形状の楕円体
- 二次元楕円ガウス分布フィットからも確認

	Major axis	Minor axis	Position angle
	FWHM ["]	FWHM [″]	[[°]]
RCS J2319+0038	49.8 ± 4.8	33.6 ± 3.2	92.0 ± 9.7
HSC J0947-0119	58.6 ± 3.5	38.7 ± 2.3	72.3 ± 5.5

楕円モデルを用いた解析

•X線表面輝度分布を楕円ベータモデルでフィット

$$S(\vec{\theta}) = S_0 \left[1 + \left(\frac{\bar{\theta}}{\theta_c}\right)^2 \right]^{-3\beta + \frac{1}{2}}, \quad \bar{\theta} = \sqrt{\bar{x}^2 + \bar{y}^2} \qquad \begin{pmatrix} \bar{x} \\ \bar{y} \end{pmatrix} = \begin{pmatrix} \frac{1}{\sqrt{q}} & 0 \\ 0 & \sqrt{q} \end{pmatrix} \begin{pmatrix} \cos\psi & \sin\psi \\ -\sin\psi & \cos\psi \end{pmatrix} \begin{pmatrix} x - x_0 \\ y - y_0 \end{pmatrix},$$

q(<1)---長軸と短軸の比、 ψ ---長軸のposition angle

S_0 [counts s ⁻¹ arcsec ⁻²]	β	θ _c ["]	q	ψ [[°]]
$(2.64^{+0.21}_{-0.20}) \times 10^{-5}$	$0.673^{+0.034}_{-0.032}$	$13.2^{+1.4}_{-1.2}$	$0.694^{+0.036}_{-0.034}$	96.7 ± 3.9

• 三次元構造は奥行き方向の軸比を仮定したガス密度モデル

$$n_{\rm e}(\vec{r}) = n_{\rm e0} \left[1 + \frac{\bar{\theta}^2 + (\phi/\eta)^2}{\theta_{\rm c}^2} \right]^{-\frac{3}{2}\beta}, \quad \\$$
軸比は $\sqrt{q}: \frac{1}{\sqrt{q}}: \eta$

圧力プロファイルの比較

- generalized NFW pressure profile と比較
- 黒点線: z<0.2 X-ray selected cluster (Arnaud et al. 2010)。
- 青破線:0.6<z<1.2 SZE selected cluster (Mcdonald et al. 2014)
- 線が3本あるのは上からcoolcore, all, noncoolcore
- 重力レンズで得たM₅₀₀だと合わない(上段)
 .1.5倍程度重くすると合う(下段)
- J2319--- 0.6<z<1.2のサンプルと合う
- J0947----0.6<z<1.2, non-coolcoreが良さそう。

Deprojection analisys

• RCS J2319+0038についてX線とSZ のデータを用いてdeprojection ---> kT, n の楕円 profile 0.6 < z < 1.2 cool core (Mcdonald et al. 2014)にあう。 • $K = kT_e n_{\rho}^{3}$ $\frac{3}{2} \frac{(n_e + n_H + n_{He})kT_e}{(n_e + n_H + n_{He})kT_e}$ $t_{cool} =$

 $l = \frac{1}{2} \frac{1}{n_e n_H \wedge_{bol}}$

 Λ_{bol} :熱制動放射 + line emission エントロピーや冷却時間からは 弱めのcool core があるように見え る。

Summary

- 遠方銀河団RCS J2319+0038(z=0.9)およびHSC J0947-0119(z=1.1)にたいして
 ALMA Band3(92GHz)を用いてSZEのイメージング観測を行った。
- X-ray(Chandra, RCS J2319のみ)、SZE(ACT)、可視光&弱重力レンズ(Subaru)の データとも比較を行った。
- SZEとX-rayイメージに対して楕円体モデルを用いてdeprojectionをおこなっ
 - た(z>0.9の天体では初の試み)。
 - 両天体に対して圧力プロファイルを求めた。
 - RCS J2319に対して温度&ガス密度プロファイルを求め、さらにエントロピーと冷却時間も調べた。
- RCS J2319は(近傍に比べて)弱いcool coreを持っている可能性が高い。
- HSC J0947はnon cool core銀河団の可能性が高い。
- ALMAによる高空間分解能SZE観測が遠方銀河団ガスの物理状態を調べるの に有効であることを示した。